Anmelden

It is far more common for collisions to occur in two dimensions; that is, the initial velocity vectors are neither parallel nor antiparallel to each other. Let's see what complications arise from this. The first idea is that momentum is a vector. Like all vectors, it can be expressed as a sum of perpendicular components (usually, though not always, an x-component and a y-component, and a z-component if necessary). Thus, when the statement of conservation of momentum is written for a problem, the momentum vectors can be, and usually will be, expressed in component form. Conservation of momentum is valid in each direction independently.

The method for solving a two-dimensional (or even three-dimensional) conservation of momentum problem is generally the same as the method for solving a one-dimensional problem, except that the momentum is conserved in both (or all three) dimensions simultaneously. The following steps are carried out to solve a momentum conservation problem in multiple dimensions:

  1. Identify the closed system.
  2. Write down the equation representing the conservation of momentum in the x-direction, and solve it for the desired quantity. When calculating a vector quantity (velocity, usually), this will give the x-component of the vector.
  3. Write down the equation representing the conservation of momentum in the y-direction, and solve. This will give the y-component of the vector quantity.
  4. Similar to calculating for a vector quantity, apply the Pythagorean theorem to calculate the magnitude, using the results of steps 2 and 3.

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as seen in medical applications of nuclear physics and particle physics. For instance, Ernest Rutherford discovered the nature of the atomic nucleus from such experiments.

This text is adapted from Openstax, University Physics Volume 1, Section 9.5: Collisions in Multiple Dimensions.

Tags

Keyword Extraction CollisionMultiple DimensionsMomentum VectorConservation Of MomentumX componentY componentPythagorean TheoremTwo dimensional CollisionSubatomic ParticlesNuclear PhysicsParticle PhysicsErnest RutherfordAtomic Nucleus

Aus Kapitel 9:

article

Now Playing

9.11 : Collisions in Multiple Dimensions: Introduction

Linear Momentum, Impulse and Collisions

4.3K Ansichten

article

9.1 : Linearer Impuls

Linear Momentum, Impulse and Collisions

13.3K Ansichten

article

9.2 : Kraft und Schwung

Linear Momentum, Impulse and Collisions

13.5K Ansichten

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

16.5K Ansichten

article

9.4 : Impuls-Impuls-Satz

Linear Momentum, Impulse and Collisions

10.7K Ansichten

article

9.5 : Impulserhaltung: Einleitung

Linear Momentum, Impulse and Collisions

14.1K Ansichten

article

9.6 : Impulserhaltung: Problemlösung

Linear Momentum, Impulse and Collisions

9.5K Ansichten

article

9.7 : Arten von Kollisionen - I

Linear Momentum, Impulse and Collisions

6.3K Ansichten

article

9.8 : Arten von Kollisionen - II

Linear Momentum, Impulse and Collisions

6.6K Ansichten

article

9.9 : Elastische Kollisionen: Einführung

Linear Momentum, Impulse and Collisions

10.4K Ansichten

article

9.10 : Elastische Kollisionen: Fallstudie

Linear Momentum, Impulse and Collisions

11.4K Ansichten

article

9.12 : Kollisionen in mehreren Dimensionen: Problemlösung

Linear Momentum, Impulse and Collisions

3.4K Ansichten

article

9.13 : Schwerpunkt: Einführung

Linear Momentum, Impulse and Collisions

12.2K Ansichten

article

9.14 : Bedeutung des Massenschwerpunkts

Linear Momentum, Impulse and Collisions

6.0K Ansichten

article

9.15 : Potentielle Gravitationsenergie für ausgedehnte Objekte

Linear Momentum, Impulse and Collisions

1.3K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten