JoVE Logo

Anmelden

The concept of dimension is important because every mathematical equation linking physical quantities must be dimensionally consistent, implying that mathematical equations must meet the following two rules. The first rule is that, in an equation, the expressions on each side of the equal sign must have the same dimensions. This is fairly intuitive since we can only add or subtract quantities of the same type (dimension). The second rule states that, in an equation, the arguments of any of the standard mathematical functions like trigonometric functions, logarithms, or exponential functions must be dimensionless.

If either of these two rules is violated, the equation is dimensionally inconsistent, hence it cannot be a representation of the correct statement of any physical law. Dimensional analysis can check for mistakes or typos in algebra, help remember the various laws of physics, and even suggest the form that new laws of physics might take.

Let us understand the effect of the operations of calculus on dimensions. The derivative of a function is the slope of the line tangent to its graph, and slopes are ratios. Thus, for physical quantities, say v and t, the dimension of the derivative of v with respect to t is the ratio of the dimension of v over that of t. Similarly, since integrals are just sums of products, the dimension of the integral of v with respect to t is simply the dimension of v times the dimension of t.

This text is adapted from Openstax, University Physics Volume 1, Section 1.4: Dimensional Analysis.

Tags

Dimensional AnalysisDimensionsDimensional ConsistencyDimensionlessPhysical QuantitiesMathematical EquationsCalculusDerivativeIntegral

Aus Kapitel 1:

article

Now Playing

1.12 : Dimensional Analysis

Units, Dimensions, and Measurements

14.6K Ansichten

article

1.1 : Der Anwendungsbereich der Physik

Units, Dimensions, and Measurements

25.5K Ansichten

article

1.2 : Größenordnungen

Units, Dimensions, and Measurements

16.4K Ansichten

article

1.3 : Modelle, Theorien und Gesetze

Units, Dimensions, and Measurements

5.0K Ansichten

article

1.4 : Maßeinheiten und -standards

Units, Dimensions, and Measurements

30.6K Ansichten

article

1.5 : Schätzung der physikalischen Größen

Units, Dimensions, and Measurements

4.0K Ansichten

article

1.6 : Basisgrößen und abgeleitete Größen

Units, Dimensions, and Measurements

19.6K Ansichten

article

1.7 : Umrechnung von Einheiten

Units, Dimensions, and Measurements

21.4K Ansichten

article

1.8 : Genauigkeit und Präzision

Units, Dimensions, and Measurements

8.5K Ansichten

article

1.9 : Zufällige und systematische Fehler

Units, Dimensions, and Measurements

10.7K Ansichten

article

1.10 : Regeln für signifikante Zahlen

Units, Dimensions, and Measurements

12.3K Ansichten

article

1.11 : Signifikante Zahlen in Berechnungen

Units, Dimensions, and Measurements

10.2K Ansichten

article

1.13 : Problemlösung: Dimensionsanalyse

Units, Dimensions, and Measurements

3.1K Ansichten

article

1.14 : Lösen von Problemen in der Physik

Units, Dimensions, and Measurements

5.6K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten