JoVE Logo

Anmelden

14.13 : G-protein Coupled Receptors

G-Protein-gekoppelte Rezeptoren sind Rezeptoren die Liganden binden. Sie beeinflussen Veränderungen in einer Zelle indirekt. Der eigentliche Rezeptor ist ein einzelnes Polypeptid, das die Zellmembran sieben Mal durchquert und dabei intra-und extrazelluläre Schleifen bildet. Die extrazellulären Schleifen bilden eine ligandenspezifische Bindungstasche, die Neurotransmitter oder Hormone bindet. Die intrazellulären Schleifen binden das G-Protein.

Das G-Protein oder Guanin-Nukleotid-Bindungsprotein, ist ein großer heterotrimerer Komplex. Seine drei Untereinheiten werden mit Alpha (α), Beta (β) und Gamma (γ) bezeichnet. Wenn der Rezeptor ungebunden ist bzw. ruht, bindet die α-Untereinheit ein Guanosindiphosphatmolekül oder GDP, und alle drei Untereinheiten sind an den Rezeptor gebunden.

Wenn ein Ligand an den Rezeptor bindet, setzt die α-Untereinheit das GDP frei und bindet ein Guanosintriphosphat (GTP). Diese Aktion setzt den α-GTP-Komplex und β-γ Komplex vom Rezeptor frei. Das α-GTP kann sich entlang der Membran bewegen, um sekundäre Botenstoffe wie cAMP zu aktivieren. Es gibt jedoch verschiedene Arten von α-Untereinheiten. Einige wirken auch hemmend und inaktivieren cAMP.

Der β-γ Komplex kann mit Kalium-Ionenkanälen interagieren, die Kalium (K+) in den extrazellulären Raum freisetzen und somit zu eine Hyperpolarisation der Zellmembran führt. Diese Art von ligandengebundenen Ionenkanälen bezeichnet man als G-Protein-gekoppelte nach innen gerichtete Kaliumkanäle oder GIRK.

Liganden binden den Rezeptor nicht dauerhaft. Wenn der Ligand den Rezeptor verlässt, wird er für die G-Protein-Einheiten verfügbar, um sich wieder anzukoppeln und neu zu binden. Zuvor müssen jedoch nahegelegene Enzyme, das an die α-Untereinheit gebundene, GTP wieder zu GDP hydrolysieren. Dannach verbindet sich der β-γ Komplex wieder mit dem GDP-α Komplex und das gesamte G-Protein bindet wieder an seine Rezeptordomäne.

Die häufigsten G-Protein-gekoppelten Rezeptoren sind: Muscarinische Acetylcholinrezeptoren in den Skelettmuskeln, Beta-1 Adrenozeptoren im Herzen und Vasopressin-Rezeptoren der glatten Muskelzellen. In sensorischen Systemen, wie den Geruchsrezeptoren und einigen Geschmacksrezeptoren, sind die Liganden Moleküle aus der Umwelt. Zum Beispiel binden Saccharosemoleküle an G-Protein-gekoppelte Rezeptoren, was zur Wahrnehmung des süßen Geschmacks führt.

Veränderungen in G-Protein-gekoppelten Rezeptoren können eine wesentliche Rolle bei Stimmungsstörungen, wie z.B. Depressionen, spielen. Serotonin ist ein Ligand für den 5HT1A-Rezeptor, ein G-Protein-gekoppelten Rezeptor. Es wird vermutet, dass bei Depressionen die Wechselwirkungen zwischen Ligand und Rezeptor verändert sind. Entweder bindet der Ligand nicht lange genug oder der Rezeptor reagiert nicht vollständig. Dies führt zu einer schlechten Serotonin-Signalweiterleitung, die sich als Depression manifestiert.

Tags

Aus Kapitel 14:

article

Now Playing

14.13 : G-protein Coupled Receptors

Zell-Signalwege

113.6K Ansichten

article

14.1 : Kerb-Signalweg

Zell-Signalwege

4.1K Ansichten

article

14.2 : Kanonischer Wnt-Signalweg

Zell-Signalwege

8.6K Ansichten

article

14.3 : Igel-Signalweg

Zell-Signalwege

7.3K Ansichten

article

14.4 : NF-κB-abhängiger Signalweg

Zell-Signalwege

7.2K Ansichten

article

14.5 : Interne Rezeptoren

Zell-Signalwege

2.8K Ansichten

article

14.6 : Zirkadiane Rhythmen und Genregulation

Zell-Signalwege

4.0K Ansichten

article

14.7 : Was ist Zellsignalisierung?

Zell-Signalwege

5.9K Ansichten

article

14.8 : Autokrine Signalübertragung

Zell-Signalwege

3.1K Ansichten

article

14.9 : Parakrine Signalübertragung

Zell-Signalwege

2.6K Ansichten

article

14.10 : Endokrine Signalübertragung

Zell-Signalwege

5.4K Ansichten

article

14.11 : Was sind Second Messenger?

Zell-Signalwege

3.5K Ansichten

article

14.12 : Intrazelluläre Signalkaskaden

Zell-Signalwege

27.8K Ansichten

article

14.14 : Enzymgebundene Rezeptoren

Zell-Signalwege

4.2K Ansichten

article

14.15 : Nicht-kanonische Wnt-Signalwege

Zell-Signalwege

7.2K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten