JoVE Logo

Anmelden

18.15 : Fusion von sekretorischen Vesikeln mit der Plasmamembran

Proteins and neurotransmitters in secretory vesicles can be released from a cell upon vesicle docking, priming, and fusion with the plasma membrane. Vesicles are docked and primed in preparation for the quick exocytosis of their contents in response to a stimulus. The fusion process is mainly carried out by a SNAP Receptor or SNARE complex, consisting of synaptobrevin, syntaxin-1, and SNAP-25.

In 1993, Jim Rothman proposed that the antiparallel pairing of vesicular and transmembrane SNAREs, or v- and t-SNAREs, was essential for vesicle docking. However, more recently, it has been shown that vesicle docking can also occur without SNAREs. Additionally, two soluble proteins, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAP), bind to the SNARE complex to facilitate fusion.

The v-and t-SNAREs partially fuse in the priming process, forming a fusion-ready state. The protein complexin (Cpx) clamps the SNAREs and holds the vesicles in this partially fused state to prevent premature exocytosis. Vesicular membrane fusion begins when a stimulus, such as an action potential at the axonal terminal of a neuron, opens up a calcium channel, and calcium enters the cell. A total of five calcium ions bind to each synaptotagmin (Syt) – a vesicular membrane protein on either side of the vesicle. Calcium-bound Syt releases the Cpx clamp from the SNARE complexes and opens up the fusion pore to release the neurotransmitter. After fusion, NSF and SNAP proteins disassemble SNARE complexes for recycling.

Bacterial neurotoxins, such as botulinum from Clostridium botulinum or tetanus from Clostridium tetani, can inhibit secretory vesicle fusion by damaging the SNARE proteins, which prevents the fusion of secretory vesicles with the neuronal plasma membrane. As neurotransmitters are not released, action potentials are not generated, causing paralysis of muscles, and in some cases, death.

Tags

Secretory VesiclesPlasma MembraneNeurotransmittersDockingPrimingFusionSNAP ReceptorSNARE ComplexSynaptobrevinSyntaxin 1SNAP 25Vesicle DockingV SNAREsT SNAREsN ethylmaleimide sensitive Fusion Protein NSFSoluble NSF Attachment Proteins SNAPComplexin CpxPartially Fused StateCalcium ChannelSynaptotagmin SytFusion Pore

Aus Kapitel 18:

article

Now Playing

18.15 : Fusion von sekretorischen Vesikeln mit der Plasmamembran

Endozytose und Exozytose

10.1K Ansichten

article

18.1 : Endozytose

Endozytose und Exozytose

8.9K Ansichten

article

18.2 : Phagozytose

Endozytose und Exozytose

5.9K Ansichten

article

18.3 : Pinozytose

Endozytose und Exozytose

3.2K Ansichten

article

18.4 : Rezeptor-vermittelte Endozytose

Endozytose und Exozytose

5.9K Ansichten

article

18.5 : Das frühe Endosom: Endozytose von Transferrin

Endozytose und Exozytose

3.2K Ansichten

article

18.6 : Reifung von Endosomen

Endozytose und Exozytose

4.1K Ansichten

article

18.7 : Intraluminale Vesikel und multivesikuläre Körper

Endozytose und Exozytose

3.4K Ansichten

article

18.8 : Herunterregulierung von Rezeptoren in MVKs

Endozytose und Exozytose

2.0K Ansichten

article

18.9 : Exosomen im Überblick

Endozytose und Exozytose

2.7K Ansichten

article

18.10 : Recycling von Endosomen und Transzytose

Endozytose und Exozytose

2.6K Ansichten

article

18.11 : IgG-Transzytose

Endozytose und Exozytose

2.7K Ansichten

article

18.12 : Exozytose

Endozytose und Exozytose

6.5K Ansichten

article

18.13 : Überblick über die sekretorischen Vesikel

Endozytose und Exozytose

7.6K Ansichten

article

18.14 : Sekretorische Insulin Vesikel

Endozytose und Exozytose

4.8K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten