Method Article
本工作报告了一个创新的硅尖光纤传感平台 (si-fosp), 用于对各种物理参数 (如温度、流量和辐射) 进行高分辨率和快速响应测量。这种 si-fosp 的应用范围从海洋学研究、机械工业到聚变能源研究。
在本文中, 我们介绍了一个创新的和有前途的光纤传感平台 (fosp), 我们最近提出和演示。该 fosp 依赖于连接到光纤端的硅法布里-珀罗干涉仪 (fpi), 在本工作中称为 si-fosp。si-fosp 产生由硅腔的光路长度 (opl) 确定的干涉图。测量改变 opl, 从而改变干涉图。由于硅材料具有独特的光学和热特性, 这种 si-fosp 在灵敏度和速度方面表现出了优异的性能。此外, 成熟的硅制造行业为 si-fosp 提供了出色的重现性和较低的成本, 用于实际应用。根据具体的应用, 将使用低精巧或高精巧版本, 并相应地采用两种不同的数据解调方法。将提供用于制造两个版本的 si-fosp 的详细协议。将显示三个具有代表性的应用程序及其相应的结果。第一个是用于分析海洋温跃层的水下温度计原型, 第二个是测量海洋流速的流量计, 最后一个是用于监测磁限辐射的气压计高温等离子体。
光纤传感器 (foss) 以其独特的体积、低成本、重量轻、抗电磁干扰 (emi)等独特的性能成为许多研究人员关注的焦点。这些 fos 在环境监测、海洋监测、石油勘探和工业加工等许多领域得到了广泛的应用。在温度相关传感方面, 在需要测量微小温度和快速温度变化的情况下, 传统的 fos 在分辨率和速度方面并不优越。这些限制源于许多传统 foss 所依赖的熔融二氧化硅材料的光学和热特性。一方面, 二氧化硅的热光系数 (toc) 和热膨胀系数 (tec) 分别为 1.28x10-5 riu/°c 和 5.5x10-7 m/c (m·°c); 这些值导致温度灵敏度在 1550 nm 附近仅约 13 pm/°c。另一方面, 以热能交换为响应的温度变化速度的热扩散系数仅为 1.4 x10-6 m 2; 这个值并不优于提高硅基 foss 的速度。
本文所报道的光纤传感平台 (fosp) 打破了上述熔融硅基 foss 的局限性。新的 fosp 利用晶体硅作为关键传感材料, 在光纤的末端形成高质量的法布里-珀罗干涉仪 (fpi), 这里称为硅尖 fosp (si-fop)。图 1显示了传感器头的原理图和工作原理, 传感器头是 si-fop 的核心。传感器头基本上由硅 fpi 组成, 其反射谱具有一系列周期性条纹。当 opl 满足 2nl = n, 其中 n 和 l 分别为硅 fp 腔的折射率和长度时, 就会发生破坏性干扰, 而 n 则是一个整数, 即条纹缺口的顺序。因此, 干涉条纹的位置对硅腔的 opl 有响应。根据具体应用的不同, 硅 fpi 可分为两种类型: 低精巧的 fpi 和高精巧的 fpi。低精巧 fpi 对硅腔两端具有较低的反射率, 而高精度 fpi 对硅腔两端具有较高的反射率。硅空气和硅光纤接口的反射率大约为30% 和 18%,因此图 1a所示的唯一硅 fpi 本质上是低精巧的 fpi。通过在两端涂覆薄的高反射率 (hr) 层, 形成了一个高精度的硅 fpi (图 1b)。hr 涂层 (介质或黄金) 的反射率可高达98%。对于这两种类型的 si-fosp, 当温度升高时, n 和 l 都会增加。因此, 通过监测条纹偏移, 可以推断温度变化。请注意, 对于相同数量的波长偏移, 由于边缘缺口要狭窄得多, 高细的 fpi 会提供更好的判别 (图 1c)。虽然高精巧的 si-fosp 具有更好的分辨率, 但低精巧的 si-fosp 具有更大的动态范围。因此, 这两个版本之间的选择取决于特定应用程序的要求。此外, 由于低精度和高精细硅 fpi 在半最大 (fwhm) 处的全宽差异较大, 因此其信号解调方法也不同。例如, 当唯一硅 fpi 的两端涂有98% 的 hr 层时, 1.5 nm 的理论 fwhm 减少了约 50倍, 仅为下午30倍。因此, 对于低精度的 si-fosp, 高速光谱仪足以用于数据收集和处理, 而扫描激光则应用于对高精巧的 si-fosp 进行解调, 因为 fwhm 的范围要狭窄得多, 无法通过光谱仪。协议中将对两种解调方法进行解释。
这里选择的硅材料在分辨率方面优于温度传感。相比之下, 硅的 toc 和 tec 分别为 1.5 x10-4 riu/°c 和 2.55x10-6 m/°c, 导致温度敏感性约为84.6 平方米/°c, 比所有硅基 fos2 高 6.5倍. 除了这种更高的灵敏度外, 我们还演示了一种平均波长跟踪方法, 以降低噪声水平, 从而提高低技能传感器的分辨率, 从而实现 6x10-4°c 2 的温度分辨率 . 与所有硅基 fos3的0.2°c 分辨率的比较。对于高度精巧的版本4, 分辨率进一步提高为 1.2 x10-4°c。 硅材料在速度方面也优于传感。相比之下, 硅的热扩散系数为 88x10-5 m 2/,比二氧化硅2高出60倍以上. 结合较小的占地面积 (例如, 80μm 直径, 200μm 厚度), 硅 fos 的响应时间为0.51ms, 与 x214f 耦合器尖端温度传感器5的16毫秒相比, 已被证明为2。 虽然其他 6、7、8、9组报告了一些以超薄硅膜为传感材料的温度测量研究工作, 但都没有在分辨率或速度方面具有我们传感器的性能。例如, 报告了分辨率仅为0.12°c、响应时间较长的传感器 1 s。7据报道, 0.064°c 的温度分辨率较好,10; 然而, 速度受到相对笨重的传感器头的限制。新的制造方法和数据处理算法是使 si-fosp 与众不同的原因。
除了上述温度传感的优点外, si-fosp 还可以开发成各种与温度相关的传感器, 旨在测量不同的参数, 如气体压力11、空气或水流12、13 ,14和辐射4,15。 本文详细介绍了传感器制造和信号解调协议及其三种具有代表性的应用及其结果。
1. 低密度传感器的制造
2. 高技能传感器的制造
3. 低精巧 si-fosp 的信号解调
注: 用于解调低技能 si-fosp 的系统如图 4a所示。以下详细步骤有助于设置系统和执行数据处理。
4. 高精巧 si-fosp 的信号解调
注: 用于解调高精度 si-fosp 的系统如图 5a所示。以下详细步骤有助于设置系统并进行数据后处理。
硅-fosp 作为水下温度计, 用于分析海洋温跃层
最近的海洋学研究表明, 水下成像的模糊不仅源于受污染水域的浊度, 也源于清洁海洋中的温度微结构 17,18。后一种效应一直是许多海洋学家关注的焦点, 目的是找到一种有效的方法来纠正模糊的图像19, 更好地理解和改善水中的光通信, 以及开发对湍流进行量化的手段。海洋20,21。作为温度传感器的 si-fosp 已被证明在测量水湍流22的快速温度变化方面优于目前的同类方法。在此应用中, 使用了图1a 所示的低智能传感器以及图4a 中的信号解调系统。鉴于 si-fop 温度传感器的卓越性能, 它已被开发成一种获得专利的水下仪器 23 (图 6a), 旨在表征开放水域的温跃层。本小节介绍了在美国密西西比州弗林特溪水库进行实地测试的结果 (图 6b)。
图 6c显示了2016年9月13日弗林特溪水库的一个测量的温跃层.通过 si-fop 温度传感器得到了蓝色曲线, 而红色和黑色曲线则通过两个参考商业 ctd (测量海水电导率、温度和深度的海洋学仪器) 得到。显然, si-fosp 温度传感器与参考传感器一致, 但温度结构的更多细节 (参见图 6c的插入物) 可能会提供大量额外的信息。si-fosp 温度传感器收集的信息更丰富的数据预计将影响海洋学研究的许多分支。
si-fosp 作为一个大动态的-范围流量传感器
气体或液体流量的测量对各种学术和工业部门至关重要, 这些部门可能为海洋学、天气研究、过程控制、运输和环境监测提供重要信息。将演示作为流量传感器工作的 si-fosp 的代表性结果。此应用程序使用了一种低精巧的 si-fosp。然而, 由于这种流量传感器需要传感头被另一个激光主动加热, 因此所使用的系统与图 4a所示的系统略有不同。具体而言, 使用了额外的加热激光来激活传感头, 并报告了12、13、14的流量测量系统的详细描述。
图 7a显示了位于水箱中的 si-fosp 流量传感器, 并与商用流量传感器进行了并排比较。显然, 光纤传感器的读出与商业流量传感器的读数基本一致, 如图 7b所示;然而, 当水流平静时, si-fosp 流量传感器表现出更清晰的响应, 如图7b 中的特写视图所示。
作为 emi-fisp免疫高温等离子体物理的测速仪
研究托卡马克高温等离子体物理的科学家们正在尝试将磁约束聚变反应堆的排气功率转化为光子发射, 以减轻受精量冲击到面对等离子体部件24的情况下。图 8a显示了托卡马克25的内部。光子发射通常是通过一个测速仪来测量的。虽然电阻和红外视频测压仪在实验室环境中的噪声等效功率密度 (nepd) 分别为 0.2w/m 2 和 0.23 w/m 2, 但它们容易受到苛刻的影响.与高温等离子体相关的环境。本文中报告的 si-fosp 是现有气压计的一个有希望的替代品。为了获得尽可能高的分辨率, 将使用图 1b中所示的高精巧版本。此外, 与图 5a所示的单通道解调系统略有不同, 双通道系统将使用另一个虚拟参考 4,15来补偿激光的漂移.
图 8b给出了实验室环境中一个 si-fosp 气压计的测量结果, 与另一个电阻式气压计相比。我们的 si-fosp 气压计的 nepd 为 0.27 w m2, 接近于 26,27的电子对应。注意到 si-fosp 气压计对高温等离子体物理中通常发现的 emi 具有固有的阻力, 预计它将对托卡马克的实际应用做出巨大的承诺。
图 1: 显示低精巧 (a) 和高精巧 (b) si-fosp 的原理图。(c) 具有75μm 厚硅腔的两个版本的 si-fosp 的模拟反射光谱.频谱的微小移动 (从实心曲线到虚线曲线) 被高精巧传感器更好地区分。请点击这里查看此图的较大版本.
图 2: 制造低精巧的 si-fosp.(a)-(e) 原理图制造步骤和 (f) 制造的传感器头与人的头发相比的图像。请点击这里查看此图的较大版本.
图 3: 制造高精巧的 si-fosp.(a)-(c) 原理图制造步骤和 (d) 一个制造的传感器的图像。插入 (d) 显示传感器头的顶部视图。gi-m联合会, 梯度指数多模光纤;人力资源, 高反射率。请点击这里查看此图的较大版本.
图 4: (a) 解调系统的原理图系统和 (b) 低精巧 si-fosp 的一个典型反射谱帧.请点击这里查看此图的较大版本.
图 5: (a) 解调系统的原理图系统和 (b) 高精度 si-fosp 的一个典型扫描频谱帧.请点击这里查看此图的较大版本.
图 6: 作为水下温度计的代表性结果.(a) 原型传感器仪器的图像和 (b) 现场部署。(c) 2016年9月13日美国密西西比州弗林特溪水库测量的温跃层.请点击这里查看此图的较大版本.
图 7: 作为流量传感器的代表性结果.(a) 流量测试安排的图像和 (b) sif-fosp 测量的流场与商业流量传感器测量的流场之间的比较。请点击这里查看此图的较大版本.
图 8: 作为高温等离子体研究的晴雨表的代表性结果.(a) 托卡马克25和 (b) 实验室环境中测量结果的内部高温等离子体空间的图像。这个数字是从维基共享资源中采用和修改的。请点击这里查看此图的较大版本.
硅 fpi 的尺寸 (长度和直径) 的选择是在分辨率和速度要求之间进行权衡的基础上进行的。通常, 较小的尺寸提供了更高的速度, 但也会降低分辨率2。短长度有利于获得更高的速度, 但由于反射槽的 fwhm 扩大, 它并不优于获得较高的分辨率。使用 hr 涂层来降低 fwhm 可以帮助提高分辨率, 但由于使用激光扫描进行信号解调, 它将限制动态范围。较小的直径会增加速度, 但直径应大于引线纤维的模态场直径, 这样就可以获得良好的光谱。然而, 它也发现, 硅直径大于光纤的, 有助于提高密度的螺栓测量, 由于减少传导热损失的纤维 4.因此, 传感器尺寸的选择在很大程度上取决于特定的应用。
尽管我们只演示了 si-fosp 的基本结构、制造协议和信号解调系统, 但有各种技术可以将其适合其他应用或进一步提高性能。例如, 可以采用融合拼接技术将工作温度提高到 1, 000°c 以上, 而不是使用 uv固化胶连接传感器。在如此高的工作温度下, 可以制造出创新类型的光子器件, 如微型加热器、红外发射器和气泡发生器。另一个例子是在加热激光打开和关闭时使用波长差的自温度补偿气体压力传感。此外, 通过开发新的峰值识别技术29、30,可以实现扩展动态范围内的温度测量。
为保护相关技术, 已颁发了美国专利 (第9995628号 b1)。
这项工作得到了美国海军研究实验室 (编号) 的支持。N0017315P0376, n001717315p3755);美国海军研究办公室 (编号:n000141410139, N000141410139);美国能源部 (编号:de-sc0018273, de-ac02-09ch11466, de-ac05-00or22725)。
Name | Company | Catalog Number | Comments |
200 Proof Pure Ethanol | Koptec | V1001 | |
5 Channels Duplex CWDM | Fiber Store | 5MDD-ABS-FSCWDM | |
Butterfly Laser Diode Mounts | Tholabs | LM14S2 | |
CastAway CTD | Yellow Springs Instrument | ||
CTD | Seabird | SBE 19plus | |
Current Meter | Nortek | Vector | |
Data Acquisition Device | National Instruments | NIUSB4366 | |
Digital Oscilloscope | RIGOL | DS1204B | 200 MHz 2 GSa/s |
Diode Laser | Thorlabs | LM9LP | Wavelength: 632 nm |
Fixed BNC Terminator Kit | Thorlabs | FTK01 | |
Function Waveform Generator | RIGOL | DG4162 | 160 MHz 500 GSa/s |
High Precision Cleaver | Fujikura | CT-32 | |
High Reflection Dielectric Coating | Evaporated Coating INC (ECI) | Materials and structure of the coating are unknown | |
I-MON 512 Spectrometer | Ibsen Phtonics | P/N: 1257110 | |
InGaAs Biased Detector | Tholabs | DET01CFC | FC/PC output:0-10V; Quantity: 2 |
Laser Diode | Qphotonic | QFLD-405-20S | Wavelength: 405 nm |
Laser Diode Current Controller | Tholabs | LDC 210C | 1 A and 100 mA range |
Laser Diode Temperature Controller | Tholabs | TEC 200C | Quantity: 2 |
Latex Examination Gloves | HCS | ||
Micro Slides | Corning Incorporated | ||
Narrow Linewidth DFB Laser | Eblana | EP1550-NLW-B06-100FM | Wavelength:1550 nm |
Optical Fiber Fusion Splicer | Sumitomo electric industries, LTD | 3822-2 | |
Optical Microscope and Monitor | Ikegami Tsushinki Company | PM-127 | |
Optical Spectrum Analyzer | Yokogawa | AQ6370C | wavelength range: 600-1700 nm |
Polish Machine | ULTRA TEC | 41076 | |
Post-mountable Irises | Thorlabs | Quantity: 2 | |
Pump Laser | Gooch and Housego | 0400-0974-SM | Wavelength: 980 nm |
Si Amplified Photodetector | Thorlabs | PDA36A | Wavelength: 350-1100 nm |
Silicon wafer | University Wafer | thickness: 10 µm, 200 µm, 75 µm, 40 µm | |
Single mode fiber | Corning | SMF-28 | |
Single Mode Fused Fiber Coupler | Thorlabs | Wavelength: 1550 nm | |
SM 125 interogrator | Micron Optics | ||
Submersible Aquarium Pump | Songlong | SL-403 | |
Superluminscent LED | Denselight Semiconductors | DL-BP1-1501A | wavelength range:1510-1590 nm |
Syringe Pump | Cole Parmer | 74905-02 | |
Travel Translation Stage | Thorlabs | LT1 | |
UV curable glue | Epoxy Technology | PB109077 | |
UVGL-15 Compact UV Lmap | UVP | P/N:95-0017-09 | 254/365 nm |
Variable Optical Attenuators | Tholabs | M-VA/00016951 P/N: VOA50-APC |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。