JoVE Logo

登录

Dimensional analysis is a valuable technique in fluid mechanics for simplifying complex problems by reducing them into dimensionless groups. These groups capture the essential relationships between the variables involved, allowing researchers and engineers to analyze fluid flow without dealing with each variable individually. This approach reduces the number of independent variables, allowing for easier analysis and better understanding of physical phenomena.

In fluid mechanics, dimensional analysis is used to understand the behavior of fluids in systems such as pipelines, channels, and other structures common in civil engineering. Consider the example of fluid flow through a long, smooth-walled, horizontal circular pipe, which is typical in the design of water distribution systems or sewage networks. The pressure drop per unit length along the pipe depends on variables such as pipe diameter, fluid density, fluid velocity, and viscosity. According to dimensional analysis, the pressure drop can be expressed as a function of these variables:

Equation 1

This formulation involves five independent variables, which can complicate the analysis. To simplify this, we can use dimensional analysis to reduce the number of variables into two dimensionless groups, thus streamlining the problem. Two important dimensionless groups that emerge from this analysis are the Reynolds number, which characterizes the flow regime, and the friction factor, which correlates with the pressure drop.

Equation 2

Engineers use the dimensionless groups to generate a universal curve that applies to any smooth-walled pipe and incompressible Newtonian fluid. This curve would allow them to predict the pressure drop for different pipe sizes and fluids without performing numerous experiments for each possible combination.

Figure 1

This approach minimizes the time and cost required for experimentation and allows for more straightforward design decisions. Whether designing water distribution networks or analyzing pressure losses in irrigation systems, dimensional analysis is critical for any civil engineer.

Tags

Dimensional AnalysisFluid MechanicsDimensionless GroupsFluid FlowIndependent VariablesPressure DropReynolds NumberFriction FactorWater Distribution SystemsCivil EngineeringSmooth walled PipeNewtonian FluidExperimental PredictionsDesign Decisions

来自章节 20:

article

Now Playing

20.1 : Dimensional Analysis

Dimensional Analysis, Similitude, and Modeling

159 Views

article

20.2 : The Buckingham Pi Theorem

Dimensional Analysis, Similitude, and Modeling

234 Views

article

20.3 : Determination of Pi Terms

Dimensional Analysis, Similitude, and Modeling

118 Views

article

20.4 : Dimensionless Groups in Fluid Mechanics

Dimensional Analysis, Similitude, and Modeling

128 Views

article

20.5 : Correlation of Experimental Data

Dimensional Analysis, Similitude, and Modeling

104 Views

article

20.6 : Modeling and Similitude

Dimensional Analysis, Similitude, and Modeling

129 Views

article

20.7 : Typical Model Studies

Dimensional Analysis, Similitude, and Modeling

161 Views

article

20.8 : Design Example: Creating a Hydraulic Model of a Dam Spillway

Dimensional Analysis, Similitude, and Modeling

88 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。