登录

For a conductor in which all charges are at rest, the conductor's surface is equipotential. The electric field is always perpendicular to equipotential surfaces. Therefore, in a conductor with static charges, the electric field just outside the conductor is always perpendicular to the conductor's surface. Any tangential component of the electric field will cause charges to move inside the conductor, which will violate the electrostatic nature of the system. In an electrostatic situation, if a conductor has a cavity with no charges inside it, then there can be no charge anywhere on the surface of the cavity. This means that inside a charged metallic enclosure, with no charges inside the enclosure, one can touch the walls of the enclosure from inside without getting an electrical shock.

Consider two conducting spheres of different radii having different surface charge densities and different amounts of static charges. If a thin conducting wire connects these conductors, the whole system becomes equipotential. The potential of each sphere is the same, and the surface charge density and the electric field are higher on the conductor with a smaller radius of curvature. A practical application of this phenomenon is a lightning rod—a grounded metal rod with a sharp end pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud overhead, the electric field around the sharp point becomes very large. When the field reaches a value of approximately 3.0 × 106 N/C (the dielectric strength of the air), the free ions in the air are accelerated to such high energies that their collisions with air molecules ionize the molecules. The resulting free electrons in the air then flow through the rod to Earth, thereby neutralizing some of the positive charges. This keeps the electric field between the cloud and the ground from becoming large enough to produce a lightning bolt in the region around the rod.

Tags

Equipotential SurfacesConductorsStatic ChargesElectric FieldSurface Charge DensityElectrostatic SystemConducting SpheresLightning RodDielectric StrengthElectric PotentialFree ElectronsMetallic Enclosure

来自章节 24:

article

Now Playing

24.9 : Equipotential Surfaces and Conductors

Electric Potential

3.2K Views

article

24.1 : 电势能

Electric Potential

5.2K Views

article

24.2 : 均匀电场中的电势能

Electric Potential

4.3K Views

article

24.3 : 两点电荷的势能

Electric Potential

4.2K Views

article

24.4 : 电位和电位差

Electric Potential

4.1K Views

article

24.5 : 从电场中寻找电势

Electric Potential

3.8K Views

article

24.6 : 电势 I 的计算

Electric Potential

1.8K Views

article

24.7 : 电势计算 II

Electric Potential

1.5K Views

article

24.8 : 等势面和磁力线

Electric Potential

3.5K Views

article

24.10 : 根据电势确定电场

Electric Potential

4.3K Views

article

24.11 : 泊松和拉普拉斯方程

Electric Potential

2.4K Views

article

24.12 : Van de Graaff 生成器

Electric Potential

1.6K Views

article

24.13 : 与电荷分布相关的能量

Electric Potential

1.4K Views

article

24.14 : 静电边界条件

Electric Potential

356 Views

article

24.15 : 第二唯一性定理

Electric Potential

918 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。