The prisoner's dilemma is a classic game theory model where two crime suspects must decide whether to betray each other or cooperatively remain silent. The choices they make determine their respective sentences. The Nash equilibrium occurs when each suspect chooses the best option based on the other's likely decision.
For Suspect A:
For Suspect B:
The Nash equilibrium in this situation is when both suspects choose to betray each other. This outcome is stable because neither suspect can improve their situation by changing their decision unilaterally, as doing so would lead to a worse outcome if the other chooses betrayal. The fear of receiving a harsher sentence encourages both to betray rather than cooperate.
This equilibrium is also a dominant strategy equilibrium because, for both suspects, betrayal is the best choice regardless of what the other chooses. The dilemma highlights how rational decision-making based on self-interest can lead to a worse collective outcome, as both suspects would have received shorter sentences if they had trusted each other and remained silent.
来自章节 18:
Now Playing
Game Theory
32 Views
Game Theory
115 Views
Game Theory
122 Views
Game Theory
44 Views
Game Theory
163 Views
Game Theory
36 Views
Game Theory
65 Views
Game Theory
36 Views
Game Theory
38 Views
Game Theory
30 Views
Game Theory
25 Views
Game Theory
50 Views
Game Theory
59 Views
Game Theory
33 Views
Game Theory
25 Views
See More
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。