Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University
Turbidity and total solids are related measurements addressing clarity of surface waters. Turbidity is an indirect measure of water clarity that determines the amount of light that can pass through the water. Total solids is a direct measurement of solid particles suspended in water determined by weight.
High levels of turbidity and total solids are caused by soil erosion, waste discharge, runoff, or changes in ecological communities including algal growth or abundance of benthic organisms that can disrupt sediments up into the water. Higher levels of turbidity and suspended solids can lower water quality by absorbing heat causing an increase in water temperature and a decrease in oxygen levels (warm water holds less oxygen). These conditions can also cause a decrease in photosynthesis as less sunlight penetrates the water, making the water unable to support some aquatic life. Suspended solids can also clog gills, smother eggs, reduce growth rates, and disrupt microhabitats of many aquatic organisms.
One method of measuring turbidity includes using a Secchi disk. A Secchi disk is a metal disk with alternate black and white quarters (Figure 1). It is attached to a rope that has one-foot markings along it. The disk is dropped into water until it can no longer be seen (Figure 2). The drawback of this method is that it must be done in the field and ideal protocol requires sunny conditions and that the testing area be shaded. In addition, if there is a large distance between the riverbank and the water level, it is difficult to use the Secchi disk. By using turbidity tubes, one can collect water and then perform the turbidity measurements back in the laboratory.
Figure 1. The modified Secchi disk design used in freshwater.
Figure 2. Different kinds of Secchi disk. A marine style one on the left and the freshwater version on the right
Turbidity is a relative measurement determined by measuring how much light can pass through the water sample. The higher the turbidity, the less light will pass through the sample and the “cloudier” the water will appear. Higher turbidity levels are caused by solid particles suspended in the water that scatter light rather than allow it to be transmitted through the water. The physical characteristics of suspended particles can have an effect on overall turbidity. Larger sized particles can scatter light and concentrate it a forward direction, increasing turbidity by creating interference with light transmission through the water. Particle size can also affect the quality of light; larger particle sizes tend to scatter longer wavelengths of light more than shorter wavelengths, whereas smaller particles have more scattering effect on shorter wavelengths. Increased particle concentration can also lower light transmission when light comes into contact with an increased number of particles and travels a shorter distance in between the particles, causing multiple scatterings with each particle. Darker colored particles absorb more light, whereas light colored particles can increase light scattering, and both result in increased turbidity measurements. Overall Darker particulates will result in higher turbidity than lighter colored particulates due to the increased amount of light energy absorbed by the color. The collected unknown water sample is compared to a de-ionized (DI) water blank sample that represents a turbidity value of zero. A purchased standard turbidity reagent (<1% kaolin, <0.1% magnesium nitrate, <0.1% magnesium chloride, < 0.1% 2-methyl-4-isothiazolin-3-one, < 0.1% 5-chloro-2-methyl-4-isothiazolin-3-one) is added to the blank test column in predetermined measurements to increase cloudiness in known increments until the blank and unknown sample match in turbidity based on observation of a fixed point on the bottom of two test columns. The amount of reagent required to achieve matching samples can then be converted with a table into Jackson Turbidity Units (JTUs), named after the original method of holding a long glass "Jackson" tube over a lit candle.
Total Solids is a direct measurement of the suspended solid material in the water sample. The mass of the solids is determined by using an oven to evaporate the water from the sample and isolate and weigh the solids.
1. Measuring Turbidity
2. Measuring Total Solids
3. LabQuest Method for Measuring Turbidity
4. LabQuest Method for Measuring Total Dissolved Solids Using Conductivity
The table below is used to convert amount of reagents into the turbidity units (JTU). (Table 1)
TURBIDITY
Excellent < 10 JTUs
Good 11 – 20 JTUs
Fair 21 – 90 JTUs
Poor > 90 JTUs
Total solids can be assessed using the Water Quality Monitoring Quantitative Analysis categories for total solids measurements.
TOTAL SOLIDS (mg/L)
Excellent <100
Good 101 – 250
Fair 251 – 400
Poor > 400
Number of Measured Additions | Amount in mL | Turbidity (JTUs) |
1 | 0.5 | 5 |
2 | 1.0 | 10 |
3 | 1.5 | 15 |
4 | 2.0 | 20 |
5 | 2.5 | 25 |
6 | 3.0 | 30 |
7 | 3.5 | 35 |
8 | 4.0 | 40 |
9 | 4.5 | 45 |
10 | 5.0 | 50 |
15 | 7.5 | 75 |
20 | 10.0 | 100 |
Table 1. Turbidity Test Results Table to convert number of drops (turbidity reagent) to turbidity units (JTU) and the Water Quality Monitoring Quantitative Analysis categories for turbidity.
Turbidity and total solids are important measurements of water quality because they are the most visible indicators of how “clean” a water-source is. High turbidity levels and total solids can indicate the presence of water pollutants that have an adverse effect on human, animal and plant life including bacteria, protozoa, nutrients (e.g. nitrates and phosphorus), pesticides, mercury, lead and other metals. Increased turbidity and total solids in surface water make water unpalatable for human use aesthetically and can also provide surfaces in the water for disease-causing microorganisms to grow harboring water-borne pathogens such as cryptosporidiosis, cholera and giardiasis. High amounts of suspended solids can also become be a problem to other species living in the water if particles become lodged into gills of oxygen-breathing animals in the water. Suspended particles can also disrupt light cycles and photosynthesis, altering the concentration of oxygen in the water and disturbing the aquatic system food web. Turbidity and total solids both increase at times when algal growth is high or when sediment is lifted up into the water during a storm. Both can also increase in response to human activity such as water pollution including industrial, agricultural, and residential runoff. Wastewater from sewage systems, urban runoff, and soil erosion from development can also contribute to high levels of turbidity and total solids. Easy to conduct at the site of water collection, these two simple measurements are broad indicators for a wide range of threats to water quality, all of which render surface water less useful for human purposes and also less able to support itself as an aquatic ecosystem.
Total solids are important to as use as a monitoring test for discharges from sewage treatment plants, industrial plants, or extensive crop irrigation. Areas where freshwater levels are low tend to have higher rates of evaporation and more vulnerable to higher concentrations of solids. Turbidity and total solids concentrations also tend to increase during rainfall events, especially in more highly developed areas with increased amounts of impervious surfaces and urban runoff.
Skip to...
Videos from this collection:
Now Playing
Environmental Science
35.8K Views
Environmental Science
81.1K Views
Environmental Science
49.4K Views
Environmental Science
12.6K Views
Environmental Science
22.0K Views
Environmental Science
53.1K Views
Environmental Science
89.7K Views
Environmental Science
55.7K Views
Environmental Science
38.8K Views
Environmental Science
26.4K Views
Environmental Science
30.0K Views
Environmental Science
125.4K Views
Environmental Science
29.4K Views
Environmental Science
215.7K Views
Environmental Science
16.5K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved