Source: Joseph C. Muskat, Vitaliy L. Rayz, and Craig J. Goergen, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
The objective of this video is to describe recent advancements of computational fluid dynamic (CFD) simulations based on patient- or animal-specific vasculature. Here, subject-based vessel segmentations were created, and, using a combination of open-source and commercial tools, a high-resolution numerical solution was determined within a flow model. Numerous studies have demonstrated that the hemodynamic conditions within the vasculature affect the development and progression of atherosclerosis, aneurysms, and other peripheral artery diseases; concomitantly, direct measurements of intraluminal pressure, wall shear stress (WSS), and particle residence time (PRT) are difficult to acquire in vivo.
CFD allow such variables to be assessed non-invasively. In addition, CFD is used to simulate surgical techniques, which provides physicians better foresight regarding post-operative flow conditions. Two methods in magnetic resonance imaging (MRI), magnetic resonance angiography (MRA) with either time of flight (TOF-MRA) or contrast-enhanced MRA (CE-MRA) and phase-contrast (PC-MRI), allow us to obtain vessel geometries and time-resolved 3D velocity fields, respectively. TOF-MRA is based on the suppression of the signal from static tissue by repeated RF pulses that are applied to the imaged volume. A signal is obtained from unsaturated spins moving into the volume with the flowing blood. CE-MRA is a better technique for imaging vessels with complex recirculating flows, as it uses a contrast agent, such as gadolinium, to increase the signal.
Separately, PC-MRI utilizes bipolar gradients to generate phase shifts that are proportional to a fluid's velocity, thus providing time-resolved velocity distributions. While PC-MRI is capable of providing blood flow velocities, the accuracy of this method is affected by limited spatiotemporal resolution and velocity dynamic range. CFD provides superior resolution and can assess the range of velocities from high-speed jets to slow recirculating vortices observed in diseased blood vessels. Thus, even though the reliability of CFD depends on the modeling assumptions, it opens up the possibility for high quality, comprehensive depiction of patient-specific flow fields, which can guide diagnosis and treatment.
TOF-MRA, CE-MRA and PC-MRI are often used as input geometry and flow boundary conditions for CFD simulations. As discussed above, vessel geometry and inflow boundary conditions (velocity profiles through a cross-section) are measured for each subject. For the data included in this study, the TOF-MRA resolution was 0.26 x 0.26 x 0.50 mm, while the PC-MRI resolution was 1.00 x 1.00 x 1.20 mm. The 4D Flow MRI sequence was used to acquire the three-dimensional velocity distribution through the cardiac cycle. The TOF data is segmented pseudo-automatically with a variety of tools. The image resolution, i.e., the size of a voxel, directly influences the quality of the resulting model of the geometry. 4D Flow MRI determines the velocity of blood at each voxel using phase shift
according to the following equations:
(1)
(2)
Measured phase shifts and velocities depend on the gradient field , the gyromagnetic ratio
, the initial position of the spin
, the spin velocity
, and the spin acceleration
. The magnetic fields and material constants are defined while initializing the MRI scan. 4D Flow MRI encodes in three orthogonal directions to obtain three-dimensional velocity fields. Then, 3D models for each patient- or animal-specific case can be generated. The methods detailed in the procedure section will bring us to a CFD simulation by numerically solving the Navier-Stokes equations, which are generalized as:
(3)
where is density,
is flow velocity, p is pressure, and mu is the dynamic viscosity of the flow.
A precursor to the tutorial is the creation of a patient-specific vasculature model. In this demonstration, the tools Materialise Mimics, 3D Systems Geomagic Design X, and Altair HyperMesh were used to generate a tetrahedral volume mesh from MRA data.
1. Generate vessel centerlines for the model
2. Data set-up in visualization software
3. Remap 4D Flow MRI data with the volumetric mesh-grid and delete noise
4. Determine inlet and outlet flow boundary conditions
5. Set-up CFD simulations
In this demonstration, a subject-specific model of a cerebral aneurysm was generated and the CFD was used to simulate the flow field. By providing detailed flow features and quantifying hemodynamics forces not obtainable from imaging data, CFD can be used to augment lower resolution 4D Flow MRI data. Figure 1 shows how CFD gives a more complete description of the flow in the near-wall, re-circulating regions.
Figure 1: A) Visualization of 4D Flow MRI data within the vessel geometry. B) Visualization of CFD simulation results. In general, CFD streamlines give fuller understanding of blood flow patterns within this cerebral aneurysm.
Figure 1 shows that CFD results are in agreement with in vivo 4D Flow MRI. Figure 1 (A) shows the complex, recirculating flow patterns within the aneurysmal region, the balloon-like dilatation of the artery, which were detected with 4D Flow MRI. However, regions of stagnant flow in the top and bottom sections of the lesion are not filled with streamlines. This is because the signal to noise ratio in these regions is low. CFD-simulated flow, shown in Figure 1 (B), provides a higher resolution velocity field, particularly near the vessel walls. Thus, CFD models are capable of providing higher accuracy estimates of clinically-relevant, flow-derived metrics, such as pressure, WSS, and PRT, which can be used to predict aneurysmal disease progression.
Additionally, CFD simulations can be used to model postoperative flow conditions that would result from alternative treatment options. For example, Figure 2 (A) and (B) compare flow through the same vessel with different inflow rates. By prescribing varied boundary conditions, such as simulating vessel occlusion with no flow, the flow after a variety of surgical treatments is shown.
Figure 2: A) Simulation for surgical clipping of the right anterior cerebral artery (ACA). B) Simulation for surgical clipping of the left ACA. For simplicity, this figure maintains the preoperative inflow rate at the non-modified inlet; in reality, the flow rate would increase in the open vessel to compensate. C) Normal blood flow rates prescribe the inlet conditions for this model. Patient data from 4D Flow MRI provide inlet conditions for realistic visualization of flow patterns.
The ability to simulate postoperative flow fields resulting from various surgical treatments is an important advantage of CFD models. By applying realistic, patient-specific geometries and inflow data, different treatment scenarios can be demonstrated to provide physicians with information on the effect of a planned procedure on flow patterns. For example, Figure 2 (A) and (B) show recirculating flows that would occur if one or the other proximal artery is clipped. Treatments such as vessel clipping or deploying a flow diverter can be simulated, allowing physicians and patients to decide what will work best in each specific case.
The framework described here can be used to perform patient-specific CFD simulations. A high-resolution mesh is used to interpolate low-resolution 4D Flow MRI data; this isolates the flow data and minimizes error associated with noise external to the vessel wall. By using patient-based boundary conditions for the inlet and outlet flows, the simulation is capable of matching the hemodynamic conditions imaged with MRI.
Novel methods for PC-MRI are capable of showing larger, dynamic ranges of velocities. However, this is severely limited by patient scan time. Often, patient data are acquired at lower resolutions to reduce the time spent within the scanner. Unfortunately, this can result either in aliased data or signal drop-off, a problem exacerbated when the velocity encoding gradient (VENC) is set too high. This can miss slow and recirculating flow data. Pairing patient-specific flow and geometry with CFD provides an effective method for capturing high-resolution blood flow dynamics.
What makes patient-based modeling inherently useful is its ability to provide detailed information without the need to generalize across patients, diseases, or treatments that typically possess very different characteristics. Simulations allow for physicians and engineers to model alternative treatment scenarios before performing an actual procedure. Simulating blood flow dynamics can be used to model flow diverting stents, artery bypass grafting, and catheter-based contrast injection, among other applications. While clinicians and patients wish for the best outcome, CFD provides a method for looking at post-operative flow, which provides better foresight. Apart from depicting flow after introducing a device or treatment, CFD allows for estimations of shear stresses at the wall. This, paired with knowledge that low WSS often correlates to arterial disease progression, allows for prediction or probability modeling. Using computational tools to identify precursors to aneurysm growth, clot formation, or hemorrhage opens the possibility of identifying at-risk patients earlier. In summary, the combination of patient-specific image data with CFD simulations is a powerful tool for disease assessment and surgical prediction.
ACKNOWLEDGEMENTS
The authors would like to thank Dr. Susanne Schnell and Michael Markl at Northwestern University for providing us with the 4D patient data used in our figures.
Atla...
Bu koleksiyondaki videolar:
Now Playing
Biomedical Engineering
11.7K Görüntüleme Sayısı
Biomedical Engineering
35.7K Görüntüleme Sayısı
Biomedical Engineering
23.6K Görüntüleme Sayısı
Biomedical Engineering
9.3K Görüntüleme Sayısı
Biomedical Engineering
14.4K Görüntüleme Sayısı
Biomedical Engineering
4.6K Görüntüleme Sayısı
Biomedical Engineering
5.7K Görüntüleme Sayısı
Biomedical Engineering
14.7K Görüntüleme Sayısı
Biomedical Engineering
8.2K Görüntüleme Sayısı
Biomedical Engineering
11.9K Görüntüleme Sayısı
Biomedical Engineering
105.0K Görüntüleme Sayısı
Biomedical Engineering
7.5K Görüntüleme Sayısı
Biomedical Engineering
8.0K Görüntüleme Sayısı
Biomedical Engineering
8.2K Görüntüleme Sayısı
Biomedical Engineering
11.0K Görüntüleme Sayısı
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır