Mechanistic models are utilized in individual analysis using single-source data, but imperfections arise due to data collection errors, preventing perfect prediction of observed data. The mathematical equation involves known values (Xi), observed concentrations (Ci), measurement errors (εi), model parameters (ϕj), and the related function (ƒi) for i number of values. Different least-squares metrics quantify differences between predicted and observed values. The ordinary least squares (OLS) method favors better predictions for larger observations. In contrast, weighted least squares (WLS) and maximum likelihood/expected least squares (ML/ELS) methods improve OLS by incorporating a weighting factor.
Population analysis models predict concentration data for multiple individuals, accounting for interindividual variability and providing individual and population predictions. The same structural model fits all individuals' data for a specific drug under study. Different types of population compartmental analysis include naïve-average data, naïve pooled data, and the two-stage approach, which includes standard, global, and iterative types. In the two-stage approach, population parameter estimates are obtained through iterative processes, such as standard two-stage (STS) and global two-stage (GTS).
Bölümden 7:
Now Playing
Pharmacokinetic Models
29 Görüntüleme Sayısı
Pharmacokinetic Models
94 Görüntüleme Sayısı
Pharmacokinetic Models
79 Görüntüleme Sayısı
Pharmacokinetic Models
164 Görüntüleme Sayısı
Pharmacokinetic Models
213 Görüntüleme Sayısı
Pharmacokinetic Models
62 Görüntüleme Sayısı
Pharmacokinetic Models
165 Görüntüleme Sayısı
Pharmacokinetic Models
64 Görüntüleme Sayısı
Pharmacokinetic Models
197 Görüntüleme Sayısı
Pharmacokinetic Models
399 Görüntüleme Sayısı
Pharmacokinetic Models
142 Görüntüleme Sayısı
Pharmacokinetic Models
104 Görüntüleme Sayısı
Pharmacokinetic Models
98 Görüntüleme Sayısı
Pharmacokinetic Models
407 Görüntüleme Sayısı
Pharmacokinetic Models
195 Görüntüleme Sayısı
See More
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır